
E, rate of dissipation of this energy; Va, ~t, ~, kinematic, turbulent, and effective viscos- 
ities, respectively; ~, stream function; Pm, minimum flow rate in the appropriate flow; Cx~, 
Cxd, drag coefficients of the leading and trailing endfaces of the interceptor (normalized 
with respect to the velocity head of the unperturbed stream and the interceptor height h); 
Cxl, Cx2, drag coefficients of the first and second interceptors; C x, total drag coefficient 
of the configuration; Cy, configuration lift coefficient; K, configuration aerodynamic quality; 
Reh, Reynolds number; Rit, Richardson number; Ret, turbulent Reynolds number; c l, c2, c D, o k , 
o~, Cw, f2, fD' constants and empirical functions governing the turbulence model. Subscripts: 
~, unperturbed flow; i, the vortex ahead of the interceptor on the free stream side; 2, the 
main vortex in the wake behind the interceptor. 
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THE EFFECT OF THERMAL SELF-ACTION OF A LIGHT BEAM IN A 

SHEAR FLOW 

M. N. Kogan, A. N. Kucherov, 
and M. V. Ustinov 

UDC 535.211+533.6 

The effect of thermal self-action in a shear gas flow transverse to the beam and 
containing a stagnation domain is investigated. 

The effect of thermal blooming of a radiation beam in a moving self-absorbing medium 
was examined earlier for the case of a homogeneous uniform flow [I, 2]. A classification 
is introduced for the light beam blooming modes in the gas flow as a function of the magni- 
tude of the stream velocity component transverse to the beam [3]. In a medium at rest and 
in a slow stream (the heat conducting mode and the forced convection mode) a beam with an 
initially Gaussian distribution is defocused, as a rule, if the index of refraction of the 
medium diminishes as the temperature rises (water, air and other media). At high stream 
velocities when pressure perturbations become substantial, focusing the beam in a gaseous 
medium becomes possible because of the thermal blooming. 

The effect exerts extreme action on the beam in an unsteady flow (at the initial time 
interval after switching in the beam). For instance, the peak intensity reaches a maximum 
or minimum depending on just how the gasdynamic blooming mode is considered [4, 5]~ 

The effect of thermal blooming is investigated in this paper in a shear flow when the 
velocity changes its magnitude in distances on the order of the beam dimension. 

We direct the z coordinate along the beam, the x coordinate in the stream direction. 
We assume the magnitude of the stream velocity to depend only on the transverse coordinate 
y (V = i UoU(y) , where V is the velocity vector, J is the unit direction along the x axis, 
U(y) is a given function, and U 0 is the characteristic magnitude of the velocity), while 

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 52, No. I, pp. 51-56, January, 1987. 
Original article submitted August 29, 1985. 

0022-0841/87/5201-0039512.50 �9 1987 Plenum Publishing Corporation 39 



the remaining gasdynamic quantities in the unperturbed stream are constants. We assume that 
the characteristic magnitude U 0 of the velocity is a value of the velocity function for y = R 
(i.e., U(y = R) = i), where the value of U 0 is such that on the one hand the viscosity and 
heat conduction can be neglected (Pc, Re >>i, where Pe = Ru0/X Re = p0UoR/O, and P0 is the 
density of the unperturbed medium), and pressure perturbations can be neglected on the other. 
In this case, according to the classification mentioned [3], we have the forced convection 
mode. 

tion 
The density perturbation in the main approximation is described by the transport equa- 

( ~ +  u(v)-~x),o~=-g(x, v, z, O, 

A T  .. Ap ~zloto I R 
. . . .  epl, e - -  - - ,  h o = c , T o ,  g = - - - - ,  t o =  . 

To ~ Po Poho I o  Uo~ 

(1) 

Here the time t is referred to the characteristic time t o of flight across the beam section 
by a fluid particle, the coordinates x, y are referred to the radius R, the stream velocity 
to U0, the radiation intensity I to the characteristic value I 0 (I 0 = Ima x for a Gaussian 
beam), the density p to the density of the unperturbed medium P0, h0 is the gas enthalpy, Cp 
is the specific heat at constant pressure, and T o is the temperature of the unperturbed 
medium. Let us note that cases are considered when the beam cross section is considerably 
less than the characteristic length of propagation R << L z. Longitudinal gradients of the 
hydrodynamic quantities along the beam can be neglected in each beam section (plane-parallel 
approximation), the function Pl depends on the coordinate z as a parameter because the radi- 
ation intensity I varies along the beam path. 

The terms containing gradients in the coordinate y are quantities of second order of 
smallness in ~. 

By using the substitution t' = t, x' = x - Ut we easily obtain a solution of (i): 

t 

p~ (x, v, z, t ) = - - f  g ( x - - U t  + U,,  V, z, .r)cl,. (2 )  
o 

In the case when the radiation intensity in the initial section is independent of the time 
(stationary distribution), the solution (2) has the form 

o~ (x, v, o, t) = u (v) g (x', v, o) dx'. (3 )  
x--Ut 

The fundamental characteristic features of the thermal blooming effect are described 
well by the approximate Gebhardt-Smith [6] and Livingston [7] solution for a Gaussian intens- 
ity distribution g = exp (-x 2 - y2), which is valid in a weakly absorbing medium (z << ~-i, 
~-I is the characteristic length of absorption), in the geometric optics approximation (z << 
kR 2, k = 2~/~ is the wave number) and for a small thermal blooming effect (z << x 0, z 0 = R/ 
/E(n 0 - L)/n 0 is the thermal blooming length, and n o is the refractive index of the medium: 

I = / p h / I o  = ~xp { - -  X 2 - -  y~ - -  N~ (x, y, 0 }, 

N = (ZlZo) ~, f = v ~ -  x 0 - 7 - -  v p~ (~, v, o, t). 

Taking (3) into account, the function f can be written for this solution 

f = exp (-- V 2) exp ( - -  T ~) dT 1 @ 2----if- - -  U - - ~  --- @2 _ 3y + 
U x t (5 )  

+ e x p [ - - ( x - - U t Y l  - - 2 x + t  U + g v U ' - -  2 ' U ] 

Going over to an analysis of specific kinds of shear flows, we recall that tracks with 
"stagnation" domains act maximally on the beam [8-10]. Let us consider the class of flows 
described by the velocity function U(y) = (y + a)n/b, where we include the case, in the con- 

40 



siderations, when the stream velocity diminishes to zero (as y § a, U § 0 - the stagnation 
domain). In the neighborhood of the stagnation section, as y + - a the expressions (3) and 

(5) take the following form 

p~=--texp(--x2--y~) [l@Uxt~ U2t ~ 2x~--I ] 3 +O(UD ' (6) 

f=--texp(--x2--Y~)[ -2+4x2~4g~+U" 2 +U'~t2 2x~--13 U'g3xt+O(U)]. (7) 

Let us examine three specific kinds of velocity distributions: i) U = y2 (n = 2, a = 0, 
b = i) is symmetric with respect to the x axis; 2) U = y (n = i, a = 0, b = i) is antisym- 
metric; 3) U = (y + 1)2/4 (n = 2, ~ = i, b = 4) is asymmetric. 

Results are represented in the figure for different velocity distributions. The thermal 
blooming parameter, which is a small quantity by virtue of the constaints mentioned, is taken 

equal to N = 0.i. Lines of equal values of the perturbation function of the density Pl are 
constructed whose minimums equal Plmin = -i, -2, -3 for t = i, 2, 3, respectively; also iso- 
chores for Pl equal to 0.9, 0.75, 0.5, 0.25, and 0.1Plmin; and the isophots for the intensities 

I = 0.75Im, 0.5Im, 0.25I m and 0~ where I m is the maximal value. 

As is seen from the Fig. la, the density minimums in a symmetric flow are at the center 
of the beam for x = 0, y = 0. The intensity peak is first bifurcated and disposed near the 
axis of symmetry. Up to the time t = 1 values of the intensity peaks exceed the initial 
values and continue to grow with time. An intensity trough is observed in the stagnation 
zone. At a certain distance from the axis of symmetry local intensity maximums grow with 
the lapse of time, and their magnitudes can exceed the values in the near-axis beams for 
t g 5. The beam as a whole is defocused, as constructions for the domains of increasing 
(AI > 0 hatched) and decreasing (hi < 0 not hatched) intensity show. The intensity in the 
beam is redistributed from the smaller to the greater area, is "blurred." The presence of 
local focusing in a shear flow is an interesting and important fact. 

The distributions of the density of the medium and the beam intensity in an antisymmetric 
flow possess central symmetry (Fig. ib). The density minimum is at the center, the intensity 
maximums at a certain distance from the center. The maximal value of the intensity grows 
monotonically and for t > 2 the magnitude of the maximums exceeds the initial value I m. The 
beam as a whole is defocused since the intensity is redistributed from the smaller to the 
greater area. A local intensity peak appears at the center of the beam with the lapse of 
time. 

In a nonsymmetric flow (Fig. Ic) when the stagnation zone is at a distance of the expon- 
ential radius of the beam for y = -i, the following distinguishing features of the thermal 
blooming effect are noticed. The density minimum shifts easily into the right lower corner 
from the center x = 0 = y. The intensity maximum is shifted into the left upper corner, in- 
creases monotonically with the lapse of time and at the time t = 3 exceeds the initial value. 
In addition, a local maximum appears in the lower right corner which exceeds the mentioned 
maximum in magnitude at the time t > 7, as computations showed. The location of this second 
peak is close to the stagnation zone. The tempo of intensity peak growth in the nonsymmetric 
flow is slower than in the two preceding cases because the stagnation zone is located at the 
edge of the beam where the intensity is not large. On the whole, the beam is defocused as 
in the two previous cases. 

The unsteady thermal blooming mode was examined above. The solutions (3)-(5) do not 
permit steady stationary density and intensity distributions to be obtained since, as (6) 
and (7) show, the perturbations grow without limit in the stagnation domain as t + ~. This 
singularity requires reexamination of the scale of the perturbation s of the characteristics 
of the medium and the thermal blooming parameter N (the thermal blooming length z0). 

Let y § -a, U + 0. Then there exists a certain scale 8 in which the heat conduction 
of the medium plays a noticeable part, at least in the direction of the y axis. Let us in- 
troduce the new transverse coordinate Y: y =-a + 6Y, 8 << i, Y ~ i, U ~ 6nyn/b. It follows 
from the heat-conduction equation that the new scale 8 equals 6 = Pe-i/(n +2), the new perturba- 
tion build-up time in the stagnation zone is t T = t06 -n = t0pen/(n+2), and the new perturba- 
tion scale of the medium parameters is e T = ~10tT/(P0h0) = gpen/(n+a). In order for small 
perturbation theory to be valid, the condition 

eT << 1, ~ << Pe-~(~+2) (8) 
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Fig. i. Isochores, isophots, and domains of increasing 
and diminishing intensity of a Gaussian beam in a sym- 
metric U = y2 (a), antisymmetric U = y (b) and asymmetric 
U = (y + 1)2/4 (c) stream; AI = I -- Ilz=0; i) intensity 
maximums; 2) local intensity maximums. 

should be satisfied. We have for the principal term of the density (temperature) perturbation 

Ot + b Ox Pl - -  O y  ~ Pi - -  g (x ,  O, 0) .  ( 9 )  

The boundary conditions for this equation are the asymmetry conditions (n even) or central 
symmetry (n odd) of the function Pl as Y + 0 and the condition of connection with the external 
solution as Y * ~: 
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b; 
91"-->"-- y---if" g (x', O, O) dx'.  

x - -Yn t  /b 

We obtain the following problem for the stationary limit t + 

(10) 

Y~ 0 0 ~ 
- -  91-- - -  Pl- -gCx,  O, ~ ,  ( 1 1 )  

b Ox OY~ 

b i (12) 91--* - -  -y---; g (x', O, O) dx' ~r Y - +  oo, 

p~(x, - - Y ) = p ~ ( x ,  Y) (n-- even ) ~r Y-+O. (13) 

Because of the diminution in the stream velocity to zero in the stagnation zone and the 
presence of perturbations of all the gasdynamic quantities, including the transverse velocity 
component v, there is the question of the influence of the transverse motion of the medium. 

It follows from the continuity equation that v ~ ~T 6n+i in order of magnitude. Then, as 
follows from the heat-conduction equation, transverse convection can be neglected if E T << 1 
(condition (8)). Therefore, transverse convection can be neglected within the framework of 
perturbation theory. 

For a symmetric flowwith the boundary conditions (12) and (13) taken into account the 
solution of (ii) has the following asymptotic representation for large and small values of 
the coordinate Y: 

I. F ( x ) _ _ ~ i  kF(x) 
r~ = y 4 h + 2  

I 

(x, Y) = {, ~ l 

h 

- -  ["I (4tz -- 1) (4n -  2), Y ---* co, 
n= I 

' dhA (x) 
dx h 

h 
11 4n (4tz -- 1) 

y2 dkg ')/ 

h (4n+2)(4n+ 1 
~=I n--I 

, Y-+0. 

(14) 

Here F(x)= [ g(x', O, O)dx', i~ F(x), iiF(x)= ~ F (x') dx', ... The function A<x) is arbi- 

trary and to be determined from the condition of connection with the solution in the domain 
Y ~ i. 

The expression for the perturbed intensity (4) in the stagnation domain can be written 

f=exp ( - -x  ~-N~ 1 0~9~ NT= zT-- , (15) 
k 2 OF 2 ' ' ]/4(no--l)/no 

where the new thermal blooming parameter is greater in order of magnitude than before: NT = 
N6 -n-2 = NPe, and the new length of the thermal blooming is shorter than before: z T = z0Pe -I/2 
Taking (14) into account, (15) shows that the beam intensity diminishes in comparison to the 
perturbed value in the neighborhood of the axis of symmetry and increases at the edge of the 
stagnation zone. Therefore, because of the stationary thermal blooming of the Gaussian beam 
in the shear flow, the radiation is displaced from the narrow stagnation domain whose trans- 
verse dimension is R6. Local focusing of the radiation is possible at the edge of this zone, 
as in the unsteady mode. The length of the thermal blooming in the stagnation zone is very 
much shorter than in the mainpart of the beam. For instance, for such widespread media as 
air (X = 1-9"10-5 m2/sec) and water (X = 1.43 '10-7 m2/sec) for R = 0.I m and U 0 = 1 m/sec the 
ratio of the blooming length in the stagnation zone and in the main part of the beam is ZT/ 
z 0 = 1.2"10 -3 and 1.38.10 -2 , respectively. The thermal blooming parameter in the stagnation 
zone is 5.3.103 times greater for air and 7.105 times greater for water, while the build-up 
time t T is greater than the build-up time in the main part of the beam in the case of a 
symmetric stream (n = 2) by 72.5 and 8.36.102 times, respectively. The transverse dimension 
of the stagnation domain is 0.117R in air and 0.0346R in water. 

NOTATION 

x, y, z, coordinates in the system coupled to the beam; t, time; U(y), a dimensionless 
velocity function; R, exponential beam radius; Pc, Peclet number; Re, Reynolds number; X, gas 
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coefficient of thermal diffusivity; ~, dynamic viscosity coefficient; Pl, dimensionless func- 
tion of the density perturbations; ~, scale of the perturbations of the gasdynamic quantities; 
g, a dimensionless function of the radiation intensity distribution; ~, absorption coefficient; 
no, refractive index of the unperturbed medium; and z0, N, length and parameter of the thermal 
blooming. 

i. 
2. 
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ENERGY DISSIPATION AND HEAT EXCHANGE IN MAGNETORHEOLOGICAL 

SUSPENSIONS IN A ROTATING MAGNETIC FIELD 

Z. P. Shul'man, V. I. Kordonskii, 
S. R. Gorodkin, B. E. Kashevskii, 
and I. V. Prokhorov 

UDC 532.135 

We present the results of experiments on the effect of the rheological properties 
of magnetic suspensions and the regime parameters on energy dissipation and heat 
transport in a rotating magnetic field. 

A magnetorheological suspension is a stable suspension of noncolloidal single-domain 
ferromagnetic particles in a fluid disPersing medium. A rotating magnetic field causes a 
remagnetization of the elements of the microstructure of the suspension. There are two mech- 
anisms: the turning of the particles themselves and flipflops of the moments of the particles 
from one direction of easy magnetization to the other. The latter is similar to the remag- 
netization of "solid" suspensions of single-domain particles, in the case when the external 
field strength exceeds the quantity Ha/2. When Ha/2 < H < H a the remagnetization has a jump- 
like discontinuity and is irreversible (so-called rotational hysteresis) [i]. 

If the rate of rotation of the external magnetizing field is small then the particles 
of the suspension can follow the field and rotational hysteresis does not occur. From the 
equation of motion of a uniaxial particle in the strong field limit (H >> H a ) [2] 

~olsHasin2 ~ = ~(~o- -d~/d~)  

we see that the particle can rotate with the field (d~/d~ = 0) up to a rotational frequency 
of the field given by 

%~<~ '=  ~oI~Ha/~. 

For larger frequencies the viscous forces "turn" the particle and it rotates with an angular 
velocity smaller than those of the field, so that there is a partial "freezing" in the fluid. 
Rotational hysteresis occurs under these conditions. 

For a suspension of ~-ferric oxide (I s = l0 s A/m; H a = 6"104 A/m) in the hydraulic fluid 
AMG-10 (~ = 0.02 Pa.sec) the quantity ~' is of order 103 sec -l. However for a concentrated 
suspension (Cvo I ~ 0.05) ~' is much lower (~' ~ i0 sec-t). This is explained by the fact 
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